INTERVAL MATCHING AND CONTROL FOR HEXAHEDRAL MESH

GENERATION OF SWEPT VOLUMES

by

Jason F. Shepherd

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Civil Engineering

Brigham Young University

April 1999

ABSTRACT

INTERVAL MATCHING AND CONTROL FOR HEXAHEDRAL MESH

GENERATION OF SWEPT VOLUMES

Jason F. Shepherd
Department of Civil Engineering

Master of Science

Surface meshing algorithms require certain relationships among the number of
intervals on the curves that bound the surface. Assigning the number of intervals to all of
the curves in the model such that all relationships are satisfied is called interval assign-
ment. Volume meshing algorithms also require certain relationships among the numbers
of intervals on each of the curves on the volume. These relationships are not always cap-
tured by the surface meshing requirements. This thesis presents a new technique for auto-
matically identifying volume constraints. In this technique, volume constraints are

grouped with surface constraints and are solved simultaneously.

A sweepable volume has source, target, and linking surfaces. The technique
described in this thesis uses graph algorithms to identify independent, parallel sets of link-
ing surfaces, and determine if they correspond to through-holes or blind-holes. For blind-
holes, the algorithm generates constraints that prevent the hole from being too deep in
interval parameter space and, thus, penetrating opposite target surfaces. For each linking
set, the adjoining source and target surfaces are partially ordered by the structure of the
linking set. A small set of representative paths for each linking set is found, and the repre-
sentative paths for all linking sets are gathered and distilled by Gaussian elimination into a

small set of constraints.

ACKNOWLEDGMENTS

In the process of completing work on this thesis, | have learned that the Master’s
thesis is in actuality the culmination of work from a large set of individuals, for which one

gets to take most of the credit. This thesis has been no exception.

| am indebted to Dr. Steven Benzley and Sandia National Laboratories for the
opportunity to be a part of this research, and also for help rendered by the CUBIT team,
especially Scott Mitchell and David White. A special thanks goes to the BYU CUBIT

team of Bob Kerr and Steve Jankovich.

My thanks also goes to Harold and Kathryn Smith for their help, time and support
in my schooling, as well as, for letting me use their basement as my playground, and my
mom and dad, Bruce and Sydnee Shepherd, for their overwhelming confidence in all of

my endeavors.

| would also like to thank Bruce and Patti Brown for the time, attention, and toys
they have loaned to me and my family, without which much of this work would have been

more difficult.

Lastly, and most importantly, | would like to thank my wife, Stacey, for her patience, love,
and support which have always been present in any adventure in which we may partici-

pate. | would not be where | am today without her...

Table of Contents

Chapter 1 - Introduction

The Finite Element Method

Mesh Generation by Mapping Techniques

Mesh Generation via Submapping

Mesh Generation via Sweeping

Surface Interval Assignment

Volume Interval Assignment

Chapter 2 — Interval Assignment Background

Linear Programs and Interval Assignment

Introduction to Linear Programs

Linear Programs and Interval Assignment

Surface Interval Constraints

Surface Mapping Constraints

Surface Submapping Constraints

Other Constraints

10

13

14

15

16

17

19

21

Sets of Surfaces

Sweeping Algorithms and Volume Constraints

Sweepable Volumes

Volume Interval Constraints

Chapter 3 - Volume Interval Assignment

Introduction to Graphing Algorithms and Definitions

What is a Graph?

The Volume Interval Assignment Algorithm

Initial Graph Creation

Final Graph Creation

Searching the Graph

Where to Search

The Breadth-First Search

Search Completion

Blind Holes

Vertex-to-Curve Translation

Constraint Formulation

Interval Assignment

Chapter 4 - Example Problems

21

22

22

24

25

26

27

27

28

29

30

31

33

34

35

35
37

Many-to-One Example with Blind Holes and Through Holes 40

Initial Graph Creation 41
Final Graph Creation 42
Graph Search 43
Vertex-to-Curve Translation 44
Edge Weight Assignment 45
Constraint Formulation and the Linear Program 46
Many-to-Many Sweep Example 47
Initial and Final Graph Creation 48
Graph Search 49

Vertex-to-Curve Translation and Edge Weight Determination50

Constraint Formulation and the Linear Program 50
Example Cam Shaft 51
Initial and Final Graph Creation 52
Graph Search 53
Constraint Formulation and the Linear Program 54
Other Examples 54

Chapter 5 - Conclusion

Summary 57

Future Areas of Research 59

Path initialization 59
Edge Parameterization 60
Global Corner Picking 61

Volume Interval Assignment for Submappable Volumes 62

Blind Holes and Many-to-Many Sweeps 62

Glossary 64

Works Cited 65

List of Figures

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.

1.9.

2.1
2.2.
2.3.
2.4.

2.5.

3.1
3.2.

3.3.

Chapter One

Parametric Surface Mapping

Surface Decomposition by Submapping

Volume Decomposition

Volume Submapping

One-to-One Sweep

Many-to-One Sweep

Many-to-Many Sweep

Sweepable Rectangular Tube

Many-to-Many Sweep with Volume Interval Constraints
Chapter Two

Surface Mapping Interval Constraints

Surface Mapping Interval Assignment and Mesh
Surface Submapping Vertex Traversal

Surface Submapping Edge Parameterization
Series of Connected Surfaces

Chapter Three

Example Graph

Example Graph

Example Sweepable Volume

10

11

18
18
19
20

22

26
26

28

3.4.
3.5.
3.6.
3.7.
3.8.

3.9.

4.1.
4.2.
4.3.
4.4,
4.5.
4.6.
4.7.
4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

Source/Target Collapse

Combining Surfaces to Form Edge Loops
Breadth-First Search

Blind Hole Graph

Constraint Formulation

Linear Program

Chapter Four

Many-to-One Sweepable Volume
Source and Target Collapse

Graph Search

Original Volume with Search Results
Volume with Volume Interval Constraints
Many-to-Many Sweepable Volume

Final Graph

Graph Search Results

Volume with Volume Interval Constraints
Cam Shaft

Final Graph

Graph Search Results

Volume with Volume Interval Constraints
Example Sweepable Volume

Example Sweepable Volume

Example Sweepable Volume

Example Sweepable Volume

Chapter Five

29
30
33
35
37

38

41
43
44
45
47
48
49
50
51
52
53
53
54
55
55
56

56

5.1.
5.2.

5.3.

Path Initialization Problem
Global Corner Picking Problem

Blind Hole Cases in Many-to-Many Sweeps

60
62

63

Chapter 1 - Introduction

The finite element method is a powerful engineering tool for analyzing models
with complex geometry. However, the technology has also produced it's own set of
obstacles. A fundamental step of the finite element method is breaking the geometry into
smaller pieces known as finite elements. This step is also known as mesh generation and
has proven to be one of the most time consuming tasks in the process. Many algorithms
have been devised in an attempt to automate this process, but currently there is no single
meshing technique that appears to fulfill all of the mesh generation requirements.
Research into mesh generation continues to enhance these algorithms to make them more
powerful and robust.

In many cases, the most time and labor intensive task of mesh generation is
geometry and attribute preparation prior to meshing. This preparation step includes
specifying the number of mesh intervals on each edge of a surface, or interval assignment.
This thesis presents the development of an algorithm designed to further automate the

process of assigning intervals to sweepable volumes.

The Finite Element Method
The finite element method is a fundamental modeling technique with widespread
use and growing popularity in the engineering community. In use since the late 1960’s,

this technique uses a numerical approximation of partial differential equations to model

the effects of heat transfer, fluid flow, and stress for objects with complex geometry. A
drawback of the finite element method is the significant amount of expertise and time
required to complete a successful analysis. Much of the research into the finite element

method focuses on further automating the process, which would allow personnel with less

training to use the process, improve productivity, and achieve more accurate sdlutions.
The most time consuming and expertise intensive part of the finite element method is the
discretization of the model’'s geometry into finite elements, the process known as mesh
generation.

The fundamental concept of mesh generation is to approximate the complex object
with a grid or collection of simpler objects. The set of elements used to approximate the
geometric object is known as the mesh. The mathematical model developed from the
finite element mesh allows the computation of physical parameters, such as stress,
temperature, pressure, etc. The computed physical parameters of each of the elements can
then be used to represent a continuous solution for the whole geometry.

The finite element method is an approximate method, and, therefore, the quality of
the mesh can affect the results produced. In practical cases, it is difficult to have perfectly
shaped elements because many of the elements must be distorted to fit the geometry. A
good mesh will tend to minimize the amount of distortion found in the element. The
guality of the mesh generated is largely a function of the technique, or scheme, selected to

generate the mesh.

Mesh Generation by Mapping Techniques

Mapping algorithms provide a powerful mesh generation technique because they
generate both a regular grid of elements and have a very small percentage of irregular
nodes. The mesh shown in Figure 1.1 is an example of a mapped surface mesh (i.e.

parameter space mapping).

H1 17
»

-

-

-

Figure 1.1- Parametric Surface Mapping

Meshes generated by mapping algorithms have the following advehtages

o Boundary Sensitivity: Mapping a region produces an all quadrilateral mesh
that closely follows the shape of the boundary. Rows of elements end at geo-
metric corners, intersect perpendicularly at large interior angles, and follow the
contour of smooth boundary segments. Since well-shaped elements are usu-
ally critical near the boundary, this characteristic is of particular importance.

o Orientation Insensitive: Different orientations of the geometry do not result in
different meshes. Mapped element approaches thus provide repeatability and
consistency.

o Regular: A mapped mesh results in a very regular pattern of connectivity
among the nodes. An interior mesh node is considered regular if it is con-
nected to four elements. Irregular nodes can appear with mapping techniques,

but they are few in number and can be placed away from the boundaries.

Most commercial mesh generation code€employ mapping algorithms to
generate all-quadrilateral meshes. The mapping techniques rely on picking the four
logical corners of the surfaces, and insuring an equal interval counts on opposite sides. A
grid can be placed on the surface to match the interval counts on each of the sides, thus
producing the all-quadrilateral mesh.

Appropriate assignment of intervals between the four logical corners of a surface is
required to produce an acceptable mesh. Improper interval assignment often leads to poor
guality meshes, or the subsequent failure of the meshing algorithm. Therefore, automated

interval assignment algorithms have been developed using linear programs to ensure

interval feasibility across sets of surfaet? 14

Mesh Generation via Submapping

Since only simple primitives such as rectangular areas and hexahedral regions can
be meshed directly with a mapping algorithm, many geometric models do not lend
themselves directly to mapping algorithms. Therefore, such geometric models must first
be divided, or decomposed, into mappable sub-regions before they can be meshed. This
decomposition of the geometry can be accomplished manually or virtually. One algorithm

for automatic virtual decomposition and mapping is known as submapping.

Figure 1.2- Surface Decomposition by Submapping (R = reversal,
C =corner, E =end, S = side)
A submapping algorithm attempts to identify the logical locations at which to
divide, or decompose, the solid model by looking for “corners” in the geometry. To
accomplish this, the interior angles on a surface are calculated and then classified as ends
(~172), sides (7), corners (~82), or reversals (9. From these angle classifications
appropriate division points between sub-volumes can be determined. If an angle is a

corner or a reversal, a division must be made at that point. The process continues until all

corners and reversals have been eliminé%é'dgure 1.2 shows an example of a surface
decomposition and Figures 1.3 and 1.4 show examples of a volume decomposition and a

completed submapping mesh.

D)

Figure 1.3- Volume Decomposition by Submapping

Figure 1.4- Volume Meshing by Submapping

Mesh Generation via Sweeping

A volume is said to be sweepable if topologically equivalent source and target
surfaces are connected by mappable or submappable linking surfaces. Such solids are also
known as two and one-half dimensional volumes because a meshed source surface is
easily projected layer by layer through the linking surfaces to the target surface. The mesh
is not really created at the volume level; rather, it is created at the surface level and

projected through the linking surfaces to fill the volume with hexahedra.

Figure 1.5- One-to-One Sweéf

Sweepable volumes are often classified by the number of source surfaces and the
number of target surfaces the volume possesses. These classifications are usually single
source to single target, multiple source to single target, and multiple source to multiple

target. An example of each of these types of volumes is shown in Figures 1.5, 1.6 and 1.7.

As can be seen in Figures 1.6 and 1.7, the complexity of the geometry, and thus the

difficulty of producing an acceptable mesh, increases as the number of source and/or

target surfaces increase.

.ﬁaww.u..ﬁ.....«&&%??.ﬂ
IO € e OO
(HT !l""#h’. QQQ.\ N
L P S A AL TR IR

R o A 0,2 e oW
e RN O o oty
RO S TS IS S

. ﬁ.. :

e S
< [e S
barglly wwmmunﬁﬂfm.'w““\

.%.u««wv\%%o..nofuﬁ.»..1...\.%“0\““\

TS
R P

Figure 1.6- Many-to-One Sweep
Until recently, multiple source to multiple target sweepable volumes have required

constraints cannot be propagated across the surfaces, the process of assigning intervals is
still a manual operation. Because of the inherent complexity of many of volumes, the

manual decomposition before the meshing could be completed. Recent research has
automated the process for this class of volénfdsowever, because some interval

interval assignment is often difficult and time-consuming.

=
1 -1
-1
L1
-1+
- 111
-1
| 11
-1
=
=
-
; I——.——_

Figure 1.7 - Many-to-Many Sweep

Surface Interval Assignment
The mapping and submapping meshing schemes rely heavily on proper corner

picking and edge interval assignment to be successful. However, because the surfaces on

a volume or set of volumes are all interconnected through the curves, the interval

assignment for the surfaces must be done simultaneously to achieve feasible results. With
the use of linear programs, and interval linear programs, an optimized interval assignment
for each curve on the volume can be obtained simultanebdgly** The constraint

equations for these linear programs can be derived from each surface’s meshing scheme

and geometry. For example, mapping and submapping require an even number of

intervals bounding the surface, and the interval counts on opposite sets of edges must be

equal.

Once the constraint equations for each surface have been formulated, the linear
program attempts to produce an optimized interval assignment for each edge. If a solution

is found then the new intervals can be assigned to each edge.

Volume Interval Assignment

This thesis presents an enhancement to the interval assignment algorithm
described above where only surface constraints were considered in the interval assignment
algorithm. Here volume constraints are added to the linear program to guarantee proper

interval assignment to a greater population of cases.

Volume constraints are required on many submappable and sweepable vblumes.
For a simple example where volume constraints are required, consider the solid shown in
Figure 1.8, with a through hole extending from the source surface to the target surface. If
the intervals along the edges of the through hole are not equal to the intervals along an
outer edge path from source to target, then this volume is no longer sweepable. Similar

constraints for volumes with non-through holes are also required.

Figure 1.8- Sweepable Rectangular Tube

10

As the complexity of the volume geometry increases, the formulation of the
volume interval constraints becomes more difficult. The volume shown in Figure 1.9 is an
example of a complex sweepable volume. The volume interval constraint that is needed to
ensure the sweepability of the volume is also given in Figure 1.9. The formulation of this

constraint will be demonstrated in Chapter 4.

7R

k
NN

7

I+ T+ Tt I+ I+ T+ Iy + Iy + I, = I

Figure 1.9- Many-to-many sweepable volume showing the necessary
volume interval constraints to ensure sweepability.
Note: K is an edge along the hole through the volume.
(Io = the number of intervals on edge A, etc.)

In many cases, the formulation of the volume constraints can become tedious,
time-consuming and frustrating. This thesis presents an algorithm which would automate
this procedure. The remainder of the material in this thesis will be presented as follows:

o Chapter Two - review of literature in interval assignment algorithms and auto-

matic hexahedral mesh generation via sweeping algorithms

11

Chapter Three - presentation of the volume interval assignment algorithm

Chapter Four - examples of several volumes to which the algorithm has been

applied
Chapter Five - review developments made by this thesis, as well as a proposal

for areas of future research.

12

Chapter 2 - Interval Assignment Background

This chapter presents a review of recent developments in sweeping and interval
assignment algorithms used to generate hexahedral meshes in a volume. The focus is on
linear programs used for interval assignment, surface interval constraints on sweepable

volumes, and enhancements to sweeping algorithms. The specific details of algorithms or

enhancements will be based on their implementation in C®BlThixed hexahedral and
tetrahedral mesh generation tool kit developed by Sandia National Laboratories.

This chapter is broken up into three main sections. First, a brief discussion of
linear programs used for interval assignment is provided. Next, a description of interval
constraint formulation procedures for mappable and submappable surfaces is given.
Finally, developments made to sweeping algorithms to enhance the capability are

considered.

Linear Programs and Interval Assignment

A linear program is an optimization problem in which the objective function and

design constraints are linear functions of the design varidbl&sr interval assignment,
the design constraints are derived from the surface geometry and meshing scheme, and the

design variables are the intervals on the curves of the surfaces.

13

Introduction to Linear Programs
The term linear programming describes a particular class of mathematical

extremization problems in which both the objective function and the constraint relations

are linear function®. The general form of a linear program can be stated mathematically
as: find x = (x1, x2,...,xn)t so as to optimize (either maximize or minimize) the objective
function subject to the specified constraints. Each constraint may be a greater-than

inequality (<=), a less-than inequality (>=) or an equality (=). Linear programs have the

following format:

optimize: Z =X+ C X+ ... + GX,
subjectto: g X1+ g KXot ...+ @ Xy (<=, =,>=)

B Xt KXot ...+ @ Xy (S=5,=,>3) b

3 X1t G Xot ot @ Xy (S5, =,>3) by

X1, X0, oy, % >=0

A special feature of a linear program results from the fact that any derivatives of
the objective function with respect to the design variables are constants which are not
necessarily zero. This implies that any extrema of the linear program must be located on
the boundary of the design space, and not to the interior of the design space. Because the
constraint relations in a linear program are also linear functions, an optimal design must
lie at the intersection of two or more constraint functions.

Because large number of variables and constraints are often associated with a
linear program, several methods have been designed which will reliably and efficiently

move from one extreme point to the next until a solution is found which both optimizes the

14

objective function and satisfies all of the design constraints. The most popular of these

methods are the simplex methbfis

An integer linear program is a linear program which has the additional constraint
of restricting all of the design variables to integer values. Integer programs are
combinatorial problems, which are generally more difficult to solve than regular linear

programming problems. Cutting-plane and branch and bound algorithms exist for the

solution of such problerfis

Linear Programs and Interval Assignment

The use of linear programming for interval control was first introduced by Tam and

Armstrongd? and later implemented into CUBIT by Mark Whit¥ly The design
variables in the linear program are the actual intervals on the curves of the volumes or sets
of volumes. Constraint equations are formulated based on the surface geometry and
meshing scheme. The formulation of these constraint equations will be discussed in the
next section.

Tam and Armstrong proposed an objective function which minimized the sum of

the weighted differences between the goal intervals and the intervals assigned by the linear

progran?’ 12 The optimal solution to this linear program was often to change the intervals

on very few curves, with the resulting changes often being quite large.

Later work by Scott Mitchellaltered the objective function to minimize the
lexicographic vector of weighted differences between the goal intervals and the assigned
intervals. This is accomplished by adding two extra “delta” variables to each curve which

are used to compute the positive and negative value between the assigned interval and the

15

goal interval. The deltas are weighted inversely proportional to the goal, and an additional
variable, M, is used to compute the maximum of the weighted deltas. The algorithm then
has two steps.

The first step solves a linear program for the constraints without the integer
programming constraints. This results in a solution for the intervals where the solution is
not necessarily an integer. The new non-integer interval values are then rounded to the
nearest integer value. The second step is to use these nearly feasible values and solve the
integer program with all of the design constraints. This is accomplished using a branch
and bound technique. The solution is expected to be near the solution found in the first
step, so to reduce the amount of time required to complete the procedure, the depth of the
branch and bound search is limited.

The resulting interval assignment has a relative change in intervals which is small,
rather than the resulting number of curves with interval assignment changes being small.

This technique gives interval assignments which have very high fidelity to the goal

intervals, spreading out the changes over multiple curves, thus, reducing mesh distortion

Surface Interval Constraints

The constraint equations supplied to the linear program are derived from the
meshing algorithms applied to the surface, as well as firmness constraints on edges
supplied when the intervals are initially assigned. The constraints derived from the

surface meshing algorithms are described in this section.

16

Surface Mapping Constraints

The surface mapping methods presented in this section are based on standard
mapping procedures. In general, these mapping algorithms work well and yield high
guality meshes in regions which have roughly parallel opposing sides. The most efficient
form of a mapping algorithm does not have a limit on the number of surface boundary

curves. The technique is to find four sets of edges on the surface, or the four logical sides,

which form a logical quadrilateral for the surfdée.
To form a logical quadrilateral for the surface, four vertices must be found which
form the best corners of the quadrilateral. The four corner vertices are found using a

corner picking algorithm which compares the set of interior surface angles and selects the

four vertices which are nearest to a perfect right angle (i.e. 90 degr&es).

Once the logical corners of the surface are found, the sets of edges between these four
vertices form the four logical sides of the quadrilateral. The constraint set for the surface
can now be formulated. For a mapping surface, the constraint is that the sum of the
intervals on opposite sets of edges are required to be equal, as shown in Figures 2.1 and

2.2.

17

X5
X6 X4

x7 Logical x3

Quadrilateral
X8 X2
X1
c G
¢ = logical corner Constramt Equations:
X2+X3+X4 = X6+X7+X8
X1=X5

Figure 2.1- Surface Mapping Interval Constraints

bty
T
4+
1 ot i
hnital interval 7]
settings T
[
i
i n.
: rH
1 3 |
&* b
X o]

Figure 2.2- Surface Mapping Interval Assignment and Mesh

18

Surface Submapping Constraints
A surface which is submappable is similar to a mappable surface, except for the
addition of vertices with interior surface angles which are nearly 270 and/or 360 degrees.

At these vertex locations, the surface must be decomposed into mappable sub-regions.

The resulting mesh is a well-formed gti.1*
To facilitate interval assignment, a submappable surface can be placed in a local i-
j coordinate system. Each edge on the surface is given a classification into a local i-j

plane. Starting at an arbitrary vertex on the surface and proceeding around the surface in a

counter-clockwise direction, each edge is classified as [+i], [-i], [+]], oFd-fi* The
classification is accomplished by calculating the interior angle between consecutive curves
and assigning the proper direction based on the calculated angle. An example of this

process is shown in Figure 2.3.

x; defines curves 110 8
on front surface

Figure 2.3- Surface Submapping Vertex Traversal

This method of traversing the surface boundary curves for the purpose of defining

their position in the local i-j coordinate system, provides the basis for the formulation of

19

interval constraints through the use of an “unfolded” surface geometry niéttiite
unfolded surface geometry can be used to formulate the constraint equations for each
surface.

The unfolded geometry is formed by taking all curves classified as [+i] and
grouping them into one side of the unfolded geometry, and similarly, the opposite side is
the collection of [-i] edges. This procedure is followed for the [j] edges, with the resulting

unfolded geometry as shown in Figure 2.4.

X7 x5 e |

“Unfolded™ Suarface
Feometry

XH X2

X1

Constramt Equations
WAHXE = X6+X2
K] = XT+X5X3

Figure 2.4- Surface Submapping Edge Parameterization and Constraint
Equations Using the “Unfolded” Surface Geometry

The constraints for the submappable surface are then formed in the same way the
constraints for a mapped surface were formed. That is, the sum of the intervals on the [+i]
edges must be equal to the sum of the intervals on the [-i] edges, and similarly for the [+]

and [-]] edges.

20

Other Constraints
Other meshing schemes can also supply constraints to the edges on a surface. For

example, paving, an advancing-front meshing algorithm, requires that the sum of the

intervals on all the curves be everAlthough these constraints rarely affect the interval
assignment on a sweepable volume, which mainly deals with the mapping and
submapping constraints, they must also be considered in the linear program.

The “firmness” of an interval count on each of the edges can also supply

constraints to the linear program. Intervals may be specified as being hard (cannot be

changed) or soft (can be modified slighfly}* An interval which is specified as hard
supplies the additional equality constraint to the linear program, while soft constraints set

goals for an optimal solution.

Sets of surfaces

Mappable and submappable surfaces often have boundary curves which are shared
with other surfaces. Due to these shared boundary curves, the interval constraints from
one surface are partially propagated to the next surface through the shared boundary
curves. An example a series of surfaces is shown in Figure 2.5. Note that if all of the
surfaces are assumed to be mappable and the intervals on edge “A” are hard set at a given
interval count, then the intervals on edges “B” through “K” are propagated through the

surfaces and must be equal to “A”.

21

Figure 2.5- Interval Constraints Imposed by Connecting Surfaces

These interconnected surfaces can be thought of as “chains” of surfaces. The
interconnected nature of the interval constraints on these surface chains is important for
submappable and sweepable volumes which contain holes. If the intervals on these chains

are not constrained together, an infeasible interval assignment may result.

Sweeping Algorithms and Volume Constraints
Sweepable Volumes

A sweepable, or two and one-half dimensional, volume is a volume that has a

topologically constant cross section along a single &ig.here are several approaches to
mesh generation via sweeping, but common to all is the idea of identifying surfaces on a
volume to serve as “sources” and “targets”, and a complementary set to serve as “linking
sides”. The source surface(s) is meshed, and then swept along the linking sides towards a

target surface. This is feasible provided the linking surfaces are meshed with a mapping

or submapping algorithrh.

22

Sweepable volumes are often classified by the number of source surfaces and the
number of target surfaces. A volume with one source surface and one target surface is
known as a single source to single target sweep. Volumes with more than one source and
only one target are known as many-to-one sweeps, and volumes with many sources and
many targets are known as many-to-many sweeps.

Until recently, many-to-many sweeps were not possible without decomposing the

volume first. Recent developments have enabled this class of volumes to be swept

automaticallﬁ* 8 Thisis accomplished through a series of source and target surface
projections and subsequent surface imprinting through sweep layers. Each of the sweep
layers is represented by a single interval along the linking surfaces. It is crucial that the
interval assignment on the linking surfaces be correct in order to guarantee proper
imprinting on the correct surface and the eventual success of the meshing scheme. Due to
the inherent complexity of the many-to-many type volumes, interval assignment can be a
tedious and time-consuming process, even with the aid of surface constraints and a linear
program. To ease this process, volume interval constraints need to be added to the linear

program.

23

Volume Interval Constraints

The linking surfaces on a sweepable volume are often interconnected to each other
through shared edges. Sets of surfaces connected through shared edges can be thought of
as “chains” of surfaces. Interval assignment and constraints are propagated around a chain
of linking surfaces through the interconnected edges. When all of the interval constraints
are met for each chain of linking surfaces, this chain can be guaranteed to be sweepable,
with respect to interval assignment.

A problem arises, however, when more than one chain of linking surfaces is
connected to a source or target surface on a volume. These cases are normally found on
volumes with holes. Because there are no shared curves connecting the surface chains
within the hole to the surface chains on the exterior of the volume, the interval constraints
are not propagated among the chains. The result is that many times the intervals within
the hole do not match the intervals on the exterior of the volume. This improper interval
assignment eventually leads to the failure of the sweeping algorithm, and, subsequently, a
time intensive process to remedy the interval assignment problem. It is this problem that
this thesis is to address.

The remedy to this problem is to formulate constraint equations which couple the
interval constraints between the surface chains to each other. These new “volume interval
constraints” can be supplied to the linear program in addition to the surface interval
constraints. The surface and volume constraints can then be solved simultaneously in the
linear program. The remainder of this thesis focuses on a new algorithm, implemented in

CUBIT, which formulates and supplies these additional volume interval constraints.

24

Chapter 3 - Volume Interval Assignment

In this chapter the volume interval assignment algorithm for sweepable volumes
will be presented. This algorithm automates the process of assigning intervals for holes in
a sweepable volume.

Before describing the volume interval assignment process, a brief description of
graphs will be given by way of introduction to the algorithm. Following these

descriptions, the general algorithm will be described with detail into each step of the

process. The description of the algorithm will be based on its implementation in GUBIT
a mixed hexahedral and tetrahedral mesh generation tool kit developed by Sandia National

Laboratories.

Introduction to Graphing Algorithms and Definitions

The volume interval assignment routine uses a graphing algorithm to identify paths
of edges from a source surface to a target surface on a sweepable volume. The goal is to
find at least one edge path per linking surface chain and constrain the sum of the intervals
on each independent chain’s edge path to be equal. This effectively couples the interval
assignment on the two chains together. A brief introduction to graphing algorithms and

the terms used in conjunction with this research will be given in this section.

What is a graph?

25

A graph consists of a set of objects called vertices and another set known as edges,

such that each edge is identified with an unordered pair of veittitas. most common
representation of a graph is by means of a diagram, in which the vertices are represented
as points and each edge as a line segment connecting it's corresponding vertices. Figures

3.1 and 3.2 are examples of graphs.

[todcivwiny |
i

r Toprdrg s Pratiiy |
| =’

_—

X Cirmapieglmiey | r ___.'Ernlrl raity | rﬂ-:ll: Ip: ._q:.l raliy]
- A . - I.'- N
[hoay | | Eowatema | ||' Wokima |
I | . : 2 = .
T [e | [Fo

Figure 3.1 & 3.2- Example Graphs

26

Because of a graph’s inherent simplicity, graph theory has a very wide range of
applications in engineering; physical, social, and biological sciences; in linguistics; and in
numerous other areas. A graph can be used to represent almost any physical situation
involving discrete objects and a relationship among them.

By supplying additional data or constraints to the vertices and/or edges in the
graph, the graph can be used to solve flow problems for city water systems, electrical
circuits, shortest path problems, etc. In addition, the graph structure is ideal for some data
storage and data searching algorithms, lending itself nicely to many applications
associated with computers and computer programming.

In this work, the vertices in the graph are known as “sweep vertices.” The edges in
the graph correspond to either a curve or a periodic surface on the volume. A collection of

sweep vertices is known as a “super vertex.”

The Volume Interval Assignment Algorithm

The volume interval assignment routine begins with an arbitrary sweepable
volume on which the source surface(s) and target surface(s) have been designated. The
goal of the routine is to detect instances of independent and parallel sets of linking surface
chains and supply interval constraints to couple the interval assignment on the surface

chains.

Initial Graph Creation
To accomplish the goal of the algorithm, a volume must be designated as
sweepable with the source and target surfaces given. A graph can then be created from the

volume geometry. Each vertex on the volume becomes a sweep vertex in the newly

27

created graph. Edges in the graph are represented by the curves or periodic surfaces
between the vertices on the volume. An example of a sweepable volume is shown in

Figure 3.3 with source surfaces surfaces S1 and S2 and the target surface T1.

51
Vertex A
1
52 1
& |I 1
=
i
y 1
|I -
! :_
] ke
o o
11

Figure 3.3- Example Sweepable Volume

As can be seen in Figure 3.3, the connectivity of the vertices through the volume’s
curves is not always enough to determine an edge path from a source surface to a target
surface. This is seen readily at vertex “A” in which there is not an edge path from the
vertex to the target surface. In other words, all edge paths from vertex “A” loop back to

source surface S1 and vertex “A” without ever encountering a vertex on a target surface.

Final Graph Creation
To alleviate this problem, a collapse of the source and target surfaces takes place,
where each of the vertices on a source or target surface is coalesced into one vertex. This

collapse creates a new vertex type in the graph called a “super vertex”. A super vertex is a

28

collection of sweep vertices. A super vertex contains the connectivity knowledge of each
individual sweep vertex on the source/target surface, thereby expanding the search
capacity of the graph across the surface. This collapse of the source and target surfaces,

and formation of the super vertices is shown in Figure 3.4,

1
I i 1
1P]
1 :]
I Iy
I i i
Ly F
1 : gy
PHEICY, EE : Gl p
#.‘_--‘I 3 s ! ‘__.:“ . .‘h.u.h- Vartioes
= g e
: K
] |>
.,‘_‘\ S Hper Wertex
i
(= -
""‘---.___,--""“JI =l

Target Samper Vertex

Figure 3.4- Source and Target Collapse to Form Super Vertices

Searching the Graph

Once the initial and final graph setups have been completed, the parallel and
independent surface chains can be searched to find edge paths from a source surface to a
target surface. Each edge within an each edge path will later be assigned a weight to be

used in formulating the constraint equations.

29

Where to Search

To reduce the total number of constraint equations written to the interval linear
program, only source surfaces with independent and parallel sets of the linking surface
chains need to be searched. Itis necessary to find the instances of the independent,
parallel linking surface chains, and find one representative edge path from the source
surface to the target surface per chain.

An assumption has been made with regards to the multiple chain detection. The
assumption is that each instance of multiple linking surface chains attached to a source
surface or set of source surfaces corresponds to multiple edge loops on the source
surface(s), as shown in Figure 3.5. The edge loops are found by first collating the source
or target surfaces with shared edges. If the remaining edges on the surface(s) form more
than one edge loop, then this surface becomes a candidate for further searching and

volume interval constraint formulation.

:> ______________

Figure 3.5- Combining Edges on Surfaces A, B, C, & D
to Form Two Edge Loops

30

From each loop a search will be initiated that will lead to a representative path of
edges from the source surface(s) to the target surface. Each loop on the source surface(s)
can be thought of as a sub-vertex within the collapsed surface(s) super-vertex. Searches

will normally be initiated from these sub-vertices.

The Breadth-First Search
The graph searching algorithm used in the volume interval assignment algorithm is
a variant of a breadth-first search. The breadth-first search algorithm was chosen for two

reasons. First, the shortest path between the start vertex and any other vertex within the

graph is always returngd This is advantageous because the shortest path represents the
fewest edges which must be constrained against each other. This results in an optimal
linear program which can have added benefits in speed for larger models. Second, the
breadth-first search generates a breadth-first tree which can be used to translate an ordered
list of vertices to edges to be used in formulating the constraint equations.

The search algorithm works by taking a starting vertex and systematically
exploring each of the edges to “discover” every vertex that is reachable from the starting
vertex. The shortest distance, or fewest number of edges, from the starting vertex to all
reachable vertices is also computed. The breadth first search is so named because it
expands the frontier between discovered and undiscovered vertices uniformly across the

breadth of the frontier. That is, the search discovers all vertices at distance (k) from the

starting vertex before discovering any vertices at a distance f&+1).
To keep track of progress, a color is given to every vertex indicate the state of the

vertex in the search. The three states in the search process correspond to the three colors:

31

white, gray, or black. All vertices start out white and later, and as they are searched,
become gray, then black. A vertex is discovered the first time it is encountered during the
search, at which time it becomes gray, then black. Gray and black vertices, therefore, have

been discovered. As the graph search progresses, the white vertices represent the frontier

of undiscovered vertices.

The breadth first search constructs a breadth-first tree, initially containing only the
starting vertex. Whenever a white vertex is discovered in the list of connected vertices, the
white vertex is added to the tree, and the color is changed to gray. Because only white
vertices are added to the tree, a vertex can be discovered at most once, and therefore each
vertex, or descendant, in the tree can have only one parent relative to the starting vertex in
the tree.

The search progresses level by level by adding white vertices to the tree below the
gray vertex being searched. Once the desired final vertex is found, the search algorithm is
stopped and the resulting tree can be searched from the final vertex to the start vertex using
the parent-descendant relationship within the tree. An example of a graph search is shown

step-by-step in Figure 3.6.

32

Graph and Search Steps

Breadth-First Trec

'.:1_--—(IE_} (C)—iD 2 2y
: o) O ol o B/
® O—©¢E
® @ 6
¢ | [= g
Ey @—Gr—H A (F)
: B
O—E o=l 5 S i
3. ; — A L)
L.E'_-:' |I.Lr| :1'! |
= r &
@D B,
IS = g
8w i i
(B (o (g
; (B)
5 _ﬂ? |'_ Al i Y
(Y s 1
. LE Cy W&
D
= LB,
) x) (F)
. ‘ “:1 == BB
{.ﬂi-l = __ _-I.
(o) (H)

Figure 3.6- The Breadth-First Search

Search Completion

For a sweepable volume, a search begins at a sub-vertex found on a source surface
with more than one edge loop, as described earlier. Prior to beginning the search, each
vertex within the super-vertex has the color set to black, with the exception of the sub-
vertex. This ensures that the search cannot loop back on itself. This step also ensures a set

of unique edge paths from the source surface to the target surface, that is no two edge

33

paths from differing sub-vertices on the source surface will contain exactly the same
edges.

The search continues in the breadth-first fashion until the first target super-vertex,
or a specified target super-vertex, is encountered. At this point, the search ends
successfully, and an ordered list of vertices is obtained from the breadth-first tree. This
ordered list of vertices can then be translated to a set of edges between each of the vertices
in the list. This set of edges represents an edge path from the sub-vertex to the target

surface.

Blind Holes

A blind hole in a volume is a hole that does not pass completely through the
volume. A graph search of a blind hole creates an interesting result. Because the super-
vertex is blacked out prior to the search, and because the search is completed successfully
only when the target super-vertex is found, a search within a blind hole can never be
completed. Using this knowledge, blind holes can be detected using the graphing
algorithm.

The constraint equation for a blind hole edge path is to set the intervals within the
blind hole to be less than the intervals without the blind hole. The search is allowed to
continue until the blind hole’s bottom is found. The search is terminated at this point and
the breadth-first tree is traversed to obtain the ordered vertex list within the blind hole.
This vertex list is flagged as belonging to a blind hole rather than a through hole, and the
corresponding constraint equation can be setup with a less-than inequality (<=), rather
than a equality (=). An example of a volume containing a blind hole and the

corresponding graph is shown in figure 3.7.

34

“E=5
r
1
I

Blind Hole

[
1Y

Sub-Vertioezs

.'- .\"\.

.\..\' L .. T W

- i, |

o |

s
-
#
&

Samer Vertex

"-I--.-

Eilind Hoke's

sageer YWerlex

Target Super YVertex

Figure 3.7- Graph with a Blind hole

Vertex to Curve Translation

The ordered vertex list must be translated to a set of edges representing an edge
path from the source surface to the target surface. Due to the collapse of the source and
target surfaces to form the super vertices, each set of consecutive vertices in the ordered
vertex list does not necessarily share a corresponding edge. Therefore, the translation also
consists of finding edges from a vertex to a source/target surface and from a source/target

surface to a vertex.

Constraint Formulation
Once the ordered list vertices has been translated to edges, the constraint
formulation for each edge path can begin. This is accomplished by attaching a weight,

termed a sweep weight, to each of the edges in the list.

35

The weight associated with each edge is found by systematically traversing the
edge list and determining the direction of traversal for the edge. An edge which is being
traversed from a source towards a target is given a weight of one, while an edge being
traversed from a target to a source is given a weight of -1. An edge which is found to be
parallel to the source or target surface is given a weight of zero.

The direction of traversal is found by using the previous edge and weight in the
edge list. If the edge is the first edge in the list, the angle is calculated between the source
surface’s normal vector and the vector represented by the edge. If the calculated angle is
approximately 180 degrees, the edge is being traversed from the source to the target, and is
assigned an edge weight of one.

The direction of traversal for the edges following the first edge in the list can be
found by using the previous edges direction of traversal and comparing it to the current
edges direction of traversal. If they are found to be in approximately the same direction,
the previous edge’s sweep weight is also assigned to the current edge’s sweep weight.
Variations in the direction of traversal from the previous edge to the current edge changes
the weight accordingly to either a zero or a negative one, depending on the calculated
angle between the two edges.

Once all edges in the edge list have a weight assigned to them, the constraint
equations can be formulated. The sum of the products of the weight and the edge’s
interval count for each path correspond to one side of a constraint equation. Two
corresponding edge paths from the same source surface are constrained as being “equal
to” for a through hole or “less than” for a blind hole. Figure 3.8 shows an example of the

constraint equation formulated for the example sweepable volume.

36

B

Search Results Translation Constraints

Figure 3.8- Search, Translation and Volume Interval Constraint Equations

Interval Assignment
The formulated constraint equations are supplied to the same interval linear
program which was developed for the surface interval assignment. Using the same linear

program for the surfaces and volumes, the interval assignment on each edge can be

optimized for all constraints on the volume, not just the surfadés.

The constraint equations are stored in the linear program as a matrix. The matrix
representation of these equations is advantageous because matrix operations can be
performed on the constraint equations to simplify the optimization of the intervals. The
volume interval constraint equations have a Gaussian elimination step which is performed
to simplify the constraint equations and reduce any ambiguity that may occur in the

process of forming the constraints.

37

and the interval assighedto curve n by the linear program

L,=the number of intervals on curven

Figure 3.9- Linear Program

38

|’ 13 Ij IE Ill
I I I I
1 4 il 10 1
: Q LY .7 LM,
" Upper Cube
r f—
| } Il5 Il? 121 123
.
| ; | :> L, I, Lg Ly 1P
11
| : l L Lo L, L
| Lower Cube
Lal o
r - »
” - 26
r
125 125
IE'.I'
Through hole surface
Minimize: Z=D;+D,+D3+Dy+D.+ D +D;+ D+ Dy +
Subiect to: (Minimum Edge Constrants)
L1 I 1 I I I I I, T,
Iy Iz I Dig Ds o Tg Thgn T T
Lo Tona I Dos Ty Ios I Ip == 1
{Linking Sides surface Constraints)
L3=14=115= Iy
L=hL=hL=I)
Lg=1y
Ls=le Lp=lp . In=Ip, La=Ix
L=0L. ;=% . L=L.In=1;
(Additional Welume Constraint)
Lg=1+15
Where: D, =the difference between the interval initially placed on curven

Once the Gaussian elimination procedure has distilled the set of volume
constraints as much as possible, the constraints are added to the system constraint matrix.
The linear program for the example volume in this chapter is shown in Figure 3.9. Figure
3.9 also displays the volume as an unfolded set of surfaces to act as a map for interpreting
the linear program. The volume constraints are added to the linear program enabling the
surface and volume constraints to be solved simultaneously.

Once the linear program has been solved, an integer linear program must also be
solved to ensure that all of the system constraints are met and that all intervals are integer

numbers, as discussed in Chapter 2.

39

Chapter 4 - Example Problems

This chapter presents some examples of volumes and the results produced from
the volume interval matching algorithm. The examples used for demonstration in this
chapter have been chosen for their ease of showing the steps of the algorithm.

Each demonstration will progress through each step of the algorithm describing the items

taking place at each step. The steps of the algorithm are:

1. Initial graph formation

2. Final graph formation

3. Searching the Graph

4. Vertex to curve translation
5. Edge weight assignment

6. Constraint equation formulation and addition of the constraint equations into the

linear program.

Other examples of meshed geometries to which the algorithm has been applied

will be shown at the end of the chapter.

Many-to-One Example with Blind and Through Holes
The first example is a many-to-one sweep with a through hole and a blind hole.

The geometry is shown in Figure 4.1.

40

Ess=== |] g —— ====

Figure 4.1- Many-to-One Example Volume

Initial Graph Creation

The initial graph for this geometry is created from the vertices of the geometry. A
sweep vertex is formed for each vertex on the volume. Each sweep vertex is given
knowledge of any vertex to which it is connected through an edge in the geometry. Each
sweep vertex can be accessed through the geometry vertex. The connected vertices are
stored in a list of vertices on each of the sweep vertices.

Vertices which are connected through periodic surfaces must also have knowledge
of each other. This is accomplished by simply adding these vertices to the vertex list
stored in the sweep vertex.

With the connectivity data stored on each sweep vertex, some geometry searching
can be accomplished. However, due to incomplete connectivity across surfaces, not all
searches from a vertex on a source surface would eventually reach a target surface.
Therefore, a collapse of the source and target surfaces is affected to complete the

necessary connectivity.

41

Final Graph Creation

A new data structure is created by the collapse of the source and target surfaces
known as a super vertex. The super vertex retains the connectivity knowledge of each of
the sweep vertices within the super vertex. This is important due to the differentiation
which must take place when a surface is to be searched.

Just prior to collapse, a query of the source and target surfaces is initiated to
determine if any of the source or target surfaces share curves with any of the other source
or target surfaces. If any of these surfaces share edges, then the two super vertices for
each of these surfaces must be combined.

To limit the number of searches which are required to take place, the number of
edge loops for each surface or set of surfaces is determined. The assumption is that only
surface sets with multiple edge loops will have multiple chains of linking surfaces
attached to them. For each edge loop on the surface(s), a sub-vertex will be formed within
the super vertex. A sub-vertex is the base of each breadth-first search tree during the
subsequent searching step. The collapse, along with the formation of the super vertices

and sub-vertices, is shown in Figure 4.2 for the example geometry.

42

Sul-Vanicas
Supar Verticss

Targal Supsar Verax

Figure 4.2- Source and Target Surface Collapse to Form
Super Vertices and the Final Graph

Graph Search

With the final graph formed, the next step is to search from each sub-vertex to find
the shortest list of vertices from a sub-vertex to the target super-vertex. A breadth-first
search is used to accomplish this step. To prevent identical paths of curves from being
returned by the search, all of the sub-vertices on the super vertex, with the exception of the
sub-vertex being searched, are blacked out prior to starting the search. This guarantees a
unique edge path per sub-vertex, and also ensures that each chain of linking surfaces will
be represented by an edge path in the constraint equations which are formulated later.

Blind holes present an interesting situation in the search. A successful search is

completed upon encountering the target super-vertex, but because all of the sub-vertices

43

have been blacked out prior to searching, any search within a blind hole results in failure
of the search algorithm. The subsequent failure is used to detect the blind holes and the
breadth-first tree is used to find a partial path of curves representing the blind hole. The
partial path is flagged as being a blind hole and the constraint equations are set up
accordingly. The search results for the example volume are shown in Figure 4.3, where
each set of dashed lines represents an independent and parallel edge path from the sub-

vertex to the target super vertex.

Search | search 2

Figure 4.3- Search Results for Two Sets of Sub-Vertices

Vertex-to-Curve Translation

An ordered list of vertices from the sub-vertex to the target super vertex results
from the search procedure. This ordered list of vertices must be translated to a list of
corresponding curves representing an edge path for each chain of linking surfaces attached
to the source surface(s). The translation process requires finding the corresponding curve

or periodic surface between two vertices in the ordered list. The vertices which are

44

returned in the ordered list are the geometry vertices, not the sweep or super vertices.
Therefore, the translation algorithm is required to find a corresponding curve between two
geometry vertices, a geometry vertex and a super vertex, or between two super vertices.

The original volume with the translated edges is shown in Figure 4.4.

/ | - [

|]]!
f —1—
! = Y - v/
| :
1 - = 1
| 1
! :
: fame. ol

Translation 1 Translation 2

Figure 4.4- Search Results Translated Back to Original Volume

Edge Weight Assignment

A weight will be multiplied by the curves interval count and the sum of the product
of all the weights and interval counts for all of the curves in the translated list corresponds
to one side of a constraint equation.

The weight on each edge is either +/-1 or zero corresponding to the sweep
direction for the volume. A curve which is being traversed in a direction from the source
to a target is given a weight of one. A curve being traversed opposite the sweep direction
is assigned a weight of negative one, and perpendicular to the sweep direction is given a

weight of zero.

45

The edge weight and sweep direction is determined from a local angle calculation
between a given curve in the curve path list and the previous curve in the same list. If the
curve is the first curve in the list, the weight is determined by calculating the interior angle
between the first curve and the source surface normal at the curves location on the source
surface. The surface normal or previous curve sweep weight is always known and the
sweep weights can be found by simply stepping through the list in order until the entire list

of curves has been assigned weight.

Constraint Formulation and the Linear Program

Each super vertex with sub-vertices will contain a set of corresponding constraint
equations which needs to be added to the linear program. Every path from the super
vertex must be constrained against every other path on the super vertex. This is
accomplished by summing the product of the weight and the interval count on each edge
within a path, and then either setting two paths equal to each other for a through hole, or
setting one side less than the other for blind holes. Every path is constrained against at
least one other path on the super vertex.

The newly formulated constraint equations are added to the linear program’s
constraint matrix through a specially written interface for volume interval assignment.
Once all constraints have been written to the constraint matrix, the constraints are distilled
through a Gaussian elimination procedure. This step reduces the overall size of the
constraint matrix, thereby speeding the solution of the linear and the integer linear
programs. The example volume with the final set of volume interval constraints is shown

in Figure 4.5.

46

Vg, b

| = v/

| M
Al Ci Fdl !

! I

=

1

Constraint Equations:
[e=14-1p

Figure 4.5- Original Volume with Volume Interval Constraint Equation
(Ia = number of intervals on curve A, etc.)

Many-to-Many Sweep Example

The second example in this chapter demonstrates the capability of the algorithm to
handle all types of sweepable volumes. The example shown in this section is a many-to-
many sweepable volume, and the procedure is shown in a step-by-step manner. Figure 4.6

is the example volume used in this section.

47

Figure 4.6- Many-to-Many Example Volume

Initial and Final Graph Creation

Graph creation for the many-to-many example is the same as the previous
example. All vertices are first assigned a sweep vertex and connectivity information is
then transferred to the super vertex during the collapse stage.

Once all sweep vertices have been defined and set, the source and target surfaces
are combined, as necessary, and any instances of multiple edge loops are found. For each
edge loop, a sub-vertex is formed, and for each source/target surface or set of surfaces, a
super vertex is formed by the collapse of the sweep vertices on the surface(s). This

process is shown in Figure 4.7.

48

Target Super Vertex .

Figure 4.7- Final Graph

Graph Search

The graph search procedure is altered slightly for the many-to-many case. The
corresponding curve paths from each sub-vertex must correlate by having similar ending
target super vertices in order for the constraint equations to be correct. Therefore, a
knowledge of the target super vertex at which the search is terminated is added to the
source super vertex. All searches which begin at the given source super vertex must end at
the same target super vertex so that the paths can be related in the constraint equations.
The search progresses in the same manner as for the many-to-one example, except that the
search is completed successfully upon reaching the specified target super vertex. Each
super vertex may then have a different target super vertex as the final destination of the
search. Figure 4.8 shows the result of a search from each of the super vertices with sub-
vertices.

49

\
1;\
\

i\ \
iy

Figure 4.8- Graph Search Results

Vertex-to-Curve Translation and Edge Weight Determination
Vertex-to-curve translation and edge weight determination is similar for both the

many-to-one and the many-to-many type sweeps.

Constraint Formulation and the Linear Program
The constraints formed in this step are also similar to the many-to-one type sweep
case. The final volume interval constraints for the example volume are shown in Figure

4.9.

50

f | //
A D%
BiD E;
I .
I 7 "
(> (>

Constraint Equations:
LAt =1, =1

Figure 4.9- Volume with Volume Interval Constraint Equations

Example Cam Shaft

The final example in this chapter demonstrates the capability of the algorithm to
handle fairly complex types of sweepable volumes. The example shown in this section is
a many-to-many sweepable volume. The procedure for generating the volume interval
constraints will be shown in a step-by-step manner. These constraints will be added to a
linear program in addition to the constraints imposed by the surfaces’ geometry and

meshing schemes. Figure 4.10 is the example volume used in this section.

51

Figure 4.10- Cam Shaft

Initial and Final Graph Creation

Graph creation for the cam shaft is the same as the previous example. All vertices
are first assigned a sweep vertex and connectivity information is transferred to the sweep
vertex. At this stage, the super vertices can be formed by collapsing the source and target

surfaces. The final graph for this example is shown in Figure 4.11.

52

larget Super Vertex Super Vertex
(5 Total)h, (6 Total)

Sub-Vertices

Figure 4.11- Final Graph for the Cam Shaft

Graph Search

The graph search procedure is the same as for the previous many-to-many case.
All search paths beginning at a given source super vertex must end at the same target super
vertex so that the paths can be related in the constraint equations. The search progresses in
the same manner as for the many-to-one example, except that the search is completed
successfully upon reaching the specified target super vertex. Each super vertex may then
have a different target super vertex as the final destination of the search. Figure 4.12

shows the result of the search from the sub-vertex for the cam shaft example.

Figure 4.12- Graph Search Results

53

Constraint Formulation and the Linear Program

The constraints are formed after translation of the search results and edge weights
are determined. The constraint is the sum of the edge weight multiplied by the interval
count on each edge for each path from the source to the target. The final volume interval
constraints for the example volume are shown in Figure 4.13. These constraints will be
supplied to the linear program in addition to the surface constraints. The addition of the
volume constraints effectively couples the surface constraints for the through hole to the

outer surfaces of the volume.

7N _

B
F* C E
A

e

L+ g+ I+t + L+ + I+ [=1

Figure 4.13- Volume with Volume Interval Constraint Equations
Note: K is an edge extending through the interior hole.
(I, = the number of intervals on edge n.)

Other Examples
Figures 4.14 through 4.17 display examples of meshed volumes to which this

algorithm has been applied.

54

e
o
i
i
i
AE

le
th Through Ho

o5y

i H
it
i
S
i
HY

P,
I
LSS
§n~

0 37
s
T

P X

h -%««on‘uuunu«»:
favn%ufnont

gl oo%ﬂv...ﬂ&b

-%.;?/-N;thm%um'

lume w
4.14- Example Vo
Figure 4.

55

a.

e
-r.;:,‘;‘

T

LR
asesteeeticy,
O
A
.. Ty
A]
25 SRR,

S
as..fn.n‘no%%sﬁ o.o#n-...o

s

e i A ol A i St L A o A S

e o A i A L A S o B e e e

s
S

31
I}

A

1N

PR oA ‘\
el S R s
LR
o

i
1
I |

Y

sy

e A

%ﬁmﬁﬁ&u&%ﬁaﬁ.
e s

Qow«n“«““niii\:iionof

1

kY

L T W T Y

I
Il
1!
A
\\\\\\\\\\

i

1)

1Y
1

I
—
7

kY

i
oy
Sy

&7

1
AT

d Hole and Through Holes

th a Blin

56

Example Volume w

A7-

4

Figure

Chapter 5 - Conclusion

This chapter presents a brief summary of the research and algorithms developed in
this thesis. Finally, several possible areas of future enhancements and research topics that

were not covered in this thesis will be discussed.

Summary

Surface meshing algorithms require certain relationships between the number of
mesh edges (intervals) on the curves bounding a surface. Assigning the number of
intervals to all of the curves in the model such that all relationships are satisfied is called
interval assignment. Volume meshing algorithms also require certain relationships
between numbers of intervals that are not always captured by the surface meshing
requirements. For example, sweeping a hollow cylindrical solid requires that the numbers
of intervals between the top and bottom annuluses are the same for the inner and outer
cylinder walls.

This thesis presented a new technique for automatically identifying volume
interval constraints. Volume interval constraints were grouped with surface interval
constraints and solved simultaneously. This technique reduced the amount of user time
required to mesh models composed of sweepable volumes with holes; previously a user
often had to manually identify constraints and set intervals before these volumes would

successfully mesh.

57

A sweepable volume has source, target, and linking surfaces. Each maximal edge-
connected set of linking surfaces defines a blind-hole, a through-hole, or the outer shell of
the volume. Note the outer shell is topologically equivalent to a through-hole. Within a
linking set, the numbers of intervals between source and target surfaces are already
favorably constrained by the surface mapping constraints. However, between two linking
sets the numbers of intervals may need to be explicitly constrained for the volume.

The procedure described in this thesis used graph algorithms to identify linking
sets, and determine if they correspond to through-holes or blind-holes. For blind-holes,
the algorithm generates constraints that prevent the hole from being too deep in interval
parameter space and penetrating opposite target surfaces. For each linking set, the
adjoining source and target surfaces are partially ordered by the structure of the linking
set. Representative chains of curves capture this partial ordering; the level of a surface at
the end of a chain must be equal to the level of the surface at the beginning of the chain
plus the number of intervals assigned to the chain. A small set of representative paths for
each linking set is found. Note that not all source/target pairs generate a path. The
representative paths for all linking sets are gathered and distilled by Gaussian elimination
into a small set of constraints.

Interval assignment has other considerations besides meshing scheme constraints:
a user sets the number of intervals on individual curves, and designates them as hard-set
(cannot be modified) or soft-set (merely a goal). Note that in some cases there is no
interval assignment solution. The interval assignment constraints and goals are solved by
a series of (integer) linear programs. The resulting numbers of intervals are assigned to
each curve in the model, and subsequently meshing the surfaces and volumes will not

change these numbers.

58

Future Areas of Research

While many areas of possible research in volume interval assignment have been

covered in this thesis, a few areas still remain. This section will discuss five areas, which

are:

1.

2.

3.

Resolution of path initialization problems

Edge parameterization

Corner picking globalization

Volume interval assignment for submappable volumes

Blind hole interval constraint formulation for many-to-many sweeps

Path Initialization

The original research for volume interval assignment made the assumption that

only surfaces with multiple edge loops would contain independent and parallel edge paths

leading from the source surface(s) to the target. In some cases, this is not necessarily true.

Consider the volume shown in Figure 5.1, where a source has a single edge loop, but

contains multiple chains of linking surfaces.

59

Figure 5.1- Path Initialization Problem

A solution to the problem shown in Figure 5.1 is to search for the edge paths both
from the source surface(s) to the target surface, and then from the target surface to the
source surface(s). This solves the problem for the multiple source to one target
classification; however, there is still potential for a small set of volumes in the multiple
source to multiple target classification to have an incomplete set of constraints to verify

the sweepability of the volume.

Edge Parameterization

The constraint equations from the volume interval assignment algorithm depend
on the weight assigned to each edge in the edge path. The weights are assigned by
determining if the edge is parallel, perpendicular, or parallel but opposite to the volume

sweep direction. The sweep direction is calculated locally by using the angles between

60

successive edges in the edge path. Angles between successive edges are calculated using
an interior angle of two vectors formed from the edges. For some cases, this is not
necessarily indicative of the sweep direction for the volume. One possible solution to this
problem is to parameterize the edges of the volume globally using the surface vertex angle
and assigning the edge to an [i-j] space, where the [i] direction is always the sweep
direction. This, however, is not an easy problem and brings us to the next area of future

research, global corner picking.

Global Corner Picking

The corner picking algorithm for surfaces often guarantees success for the surface
locally, but in some instances, can cause an infeasible or unsolveable set of constraints
within the interval assignment linear program. An example of this type of infeasibility is
shown in Figure 5.2. If vertex “A” is chosen as a corner for the linking surface, the
volume is no longer sweepable with the source and target surface specified, and,
subsequently, the edge parameterization for the volume will also be incorrect. An
algorithm is needed which will pick the corners to ensure feasibility of the global problem
for the interval assignment algorithm. Such a corner picking algorithm could also be used

to verify the sweepability of a volume, given the source and target surfaces.

61

Sonroe Surlnce

i

[arpel Surlnee

Figure 5.2- Global Corner Picking Problem

Volume Interval Assignment for Submappable Volumes

Submappable volumes can, to some extent, be thought of as a specialized sub-set
of sweepable volumes. Volume interval assignment for a submappable volume could then
be handled similarly to the algorithm for volume interval assignment for sweepable
volumes.

A submappable volume can essentially be swept in three directions. By ensuring
that the volume interval constraints are formulated and supplied to the linear program in
each of the three sweep directions, submappability with respect to interval assignment can

be assured using the same algorithm described by this thesis.

Blind Holes and Many-to-Many Sweeps
Multiple blind holes on a multiple source to multiple target sweepable volume
present an interesting problem for interval assignment. Not only are the intervals

constrained within the blind hole to be less than the intervals along the outer surface of the

62

volume, but there is also the problem of potential overlap for blind holes protruding from a
source and blind holes protruding from target surfaces. Figure 5.3 shows the possible

cases of blind holes in many-to-many volume sweeps.

Hource

Blind Hole

Target Caze A Casc B Case O

Figure 5.3- Blind Hole Cases in Many-to-Many Sweeps.
Case A: No Potential Overlap;
Case B: Full Potential Overlap;
Case C: Partial Potential Overlap
Potential solutions to this problem must handle the detection of overlap between

the blind hole’s bottom and the geometry boundary. One idea has been to use the

intersection detection algorithm described by Mingwu Lai in his work on multiple source

to multiple target sweepifig However, the algorithm assumes a proper interval
assignment prior to the intersection detection. Thus the problem becomes circular, and the

difficulty of the problem increases.

63

Glossary

Chain of SurfacesA set of surfaces connected to each other by shared edges. Chains of
surfaces usually form closed loops and are usually found as the outer skin of a volume or a
set of surfaces comprising a through hole. In a sweepable volume, the linking surfaces
will form at least one chain around the volume. Multiple chains of linking surfaces are
found on sweepable volumes containing holes.

Graph- A graph consists of a set of objects known as vertices, and another set known as
edges, such that each edge is identified with an unordered pair of vertices. Graphs are
usually represented by means of a diagram.

Linking Surface The surfaces which connect the source and target surfaces on a
sweepable volume. Linking surfaces must be mappable or submappable.

Source- The surface or set of surfaces on a sweepable volume upon which the mesh
originates. The source surface must be topologically equivalent to the target surface.

Sub-Vertex A vertex in the graph derived from a super vertex and containing only part of

the total connectivity data for a super vertex. Sub-vertices are formed from individual

loops of edges on a source surface, or set of source surfaces. Subsequent searches of the
sweepable volume graph usually originate from a sub-vertex.

Super Vertex A collection of sweep vertices containing all connectivity data of each
sweep vertex. The super vertex is formed by collapsing all sweep vertices on a source or
target surfaces into a single vertex.

Sweep VertexOn a sweepable volume, a sweep vertex is a vertex in the graph of the
volume. A sweep vertex contains the connectivity data to other sweep vertices which
forms the graph. The connectivity data is simply the edges in the graph to which this
vertex is connected.

Sweepable VolumeA volume is said to be sweepable if topologically equivalent source
and target surfaces are connected by mappable or submappable linking surfaces. The
source is meshed first, and then copied, or “swept”, layer by layer along the linking
surfaces.

Target- The surface or set of surfaces on a sweepable volume upon which the mesh
terminates. The target surface must be topologically equivalent to the source surface or
surfaces.

64

Works Cited

10.

11.

12.

13.

Bathe, K., “Current Directions in Meshingflechanical Engineeringluly 1998, pp.
70-71.

Blacker, T., “The Cooper toolProceedings of 8 International Meshing Roundtable
‘96, Sandia National Lab., 1996, pp. 13-29, 1996.

Blacker, T. D., et al., 199€UBIT Mesh Generation Environment Users Manual Vol.
1, SAND94-1100, Sandia National Laboratories, Albuguerque, NM.

Blacker, T. D., et al., 1988, “Automated Quadrilateral Mesh Generation: A Knowledge
System Approach”, ASME Paper No. 88-WA/CIE-4.

Cormen, T. H., Leiserson, C. E. and Rivest, R.lhtroduction to AlgorithmsNew
York: McGraw-Hill, 1990.

Deo, N.,Graph Theory with Application to Engineerirgsentice-Hall, Inc.,
Englewood Cliffs, N. J., 1974.

Knupp, P. M., “Next-Generation Sweep Tool: A Method for Generation All-Hex

Meshes on Two-and-One-Half Dimensional Geometriegsmteedings &
International Meshing Roundtable '9%andia National Laboratories, pp. 505-513.

Mingwu, L.,Automatic Hexahedral Mesh Generation by Generalized Multiple Source
to Multiple Target Sweepingublished Doctoral Dissertation at Brigham Young
University, 1998.

Mitchell, S., “High Fidelity Interval Assignmenﬂ?roceedings‘@ International
Meshing Roundtable ‘9Bandia National Laboratories, pp. 33-44.

Staten, M. L., Canann, S. A. and Owen, S. J., “BMsweep: Locating Interior Nodes

During Sweeping,Proceedings % International Meshing Roundtable '98andia
National Laboratories, pp. 7-18.

Stephenson, M. B. and Blacker T. D., “Using Conjoint Meshing Primitives to Generate
Quadrilateral and Hexahedral Elements in Irregular Regi@wyiputers in
EngineeringBook No. G0502B, 1989, pp. 163-172.

Tam, T. K. H. and Armstrong, C. G., “Finite Element Mesh Control by Integer
Programming,International Journal for Numerical Methods in Engineering|. 36,
pp. 2581-2605, 1993.

White, D. Automatic, Quadrilateral and Hexahedral Meshing of Pseudo-Cartesian
Geometries Using Virtual SubdivisidAublished Masters Thesis at Brigham Young
University, 1996.

65

14. Whiteley, M. An Automated Mesh Control Procedure for Generalized Mapped
Meshing,Published Masters Thesis at Brigham Young University, 1995.

15. I-Deas User’s Guide, -Structural Dynamic Research Corporation.
16. Pro/Engineer, A Solid Modeling Engine of Parametric Technology Corporation.
17. Ignizio, J. P., Cavalier, T. M.jnear ProgrammingPrentice Hall, New Jersey, 1994.

18. Whiteley, M., White, D., Benzley, S.E., and Blacker, T.D., “Two and Three-
QuarterDimensional Meshing Facilitatorgigineering with Computer&?2, pp.144-
154, 1996.

19. Wolfe, C. SLinear Programming AlgorithmsPrentice-Hall, Virginia, 1985.

66

